

MarCO Mission Summary

MarCO Mission Summary

Earth

Technologies

3) EDL Relay Demo
Real-time 8 kbps
Fly-by

Technology	Mission Objectives
Threshold	
Miniaturized deep space radio (IRIS)	Successful uplink and downlink at multiple data rates + ranging
Flat Panel Antenna	Receipt of telemetry at 8kbps
TCMs on a CubeSat	Execution of TCM 1
Baseline	
CubeSat in deep space	Viable operations beyond Earth orbit
Relay	Bent-pipe during Insight EDL

MarCO Spacecraft

MarCO Internal Components Overview

MarCO Ground Testbed

Separation Switch circuit like FM

CDH/EPS/Interface Boards: like FM

- Battery: like FM

IRIS: like FM1

- XACT: like FM, but 1 CSS

- Propulsion System electronics only

Simulators

- XACT ACS simulator- Realtime Dynamics Processor ("RDP")

ACS/Prop Interface and Interaction

- All commands to propulsion system pass through the XACT
 - Ground commands for XACT's autonomous management of thrusters or for direct thruster actuation
 - Onboard ACS Manager (ACSM) prevents multiple ACS commands from being sent at once and reduces complexity of larger command sequences by acting on flag toggling

Propulsion System Overview

Delta V Budget [m/s]

	O L ' 1					
	TCM1	TCM2	TCM3	TCM4	TCM5	Total
Worst- Case Estimate	22.70	8.40	2.40	0.42	0.11	
Sum						34.03
Systems Margin						5.97
Total Capacity						40.00

Propellant Mass Budget

Disturbance Torques	Propellant Mass [g]
Momentum Management	150
Detumbling	50
Reaction Control Margin	100
Reaction Control Total	300
Delta-V Propellant Need	1200
Delta-V Margin	370
Unusable Propellant	30
Total Propellant	1900

Flight Data: First Telemetry

- First contact with the spacecraft was a pair of "beeps"
- Receive only (no commands sent) for five and seven minutes, respectively
- Each beep contained key telemetry to assess health of spacecraft
- Reaction wheel speeds indicate momentum stored after the desaturation if it was necessary and overall spacecraft attitude stability

Flight Data: MCOA TCM2 Cleanup Maneuver

- TCMs performed in segments, with cleanup maneuvers for fine-tuning
- Off-pulsing thrusters is required for maintaining desired thrust direction
- Thruster controller is non-adaptive, so commanded thrust direction accounts for uncertainty in thrust levels and mass properties
- Spacecraft exhibits characteristic "nod" at start of burn, eventually corrected by reaction wheels at end of firing

MarCO-InSight Relay

- Prioritization scheme based on packet type (APID)
 - InSight data would stream at a near continuous sense
 - 30 sec interrupts with a snapshot of MarCO health data and a 2 sec cadence history of relevant RF information
 - Anything not relevant for informing InSight about signal status was saved for later downlink.
- Could have maintained the 62.5 bps downlink to 70m DSN station using the MGA if HGA did not perform as expected
- Leveraged an optimized trajectory for relay performance an advantage of the dedicated relay
- Able to rely on commercial equipment since only need to support the relay once (not staying in orbit)
- Add redundancy in sending two spacecraft (uncertainty in both MarCO performance and final InSight EDL trajectory)

MarCO Bent Pipe Performance for Insight EDL

- Both MarCO-A and MarCO-B met expectations
- UHF Link, both vehicles covered full duration of Insight UHF Transmit
 - MCOB lost lock for 5 sec only at the expected events of plasma blackout, parachute deploy, Lander separation, and Landing
- X-Band Link, both vehicles
 - Solid on both throughout
 - No frames dropped
- Swap of Insight uplink to MarCO-B during EDL enabled efficient use of post-EDL bandwidth resulting in receipt of this image within ~ 1 hour of Landing
- Downlinked 97% of the InSight data

Conclusions

Consider in the future:

- Dedicated small spacecraft can support critical events when too costly or infeasible for others to perform the relay
- Small spacecraft can be sent in multiples to provide improved coverage or signal reliability

Lesson Learned:

- Single uplink frequency for both
- Had end to end simulation for both X band and UHF
- In-space test with SRI (46m), Morehead was 21m

